Electricity keeps modern life running, from cars and phones to computers and nearly every device we rely on. It works through the movement of electrons traveling through a circuit. Although these particles are far too small to see, the electric current they produce flows through wires in a way that resembles water moving through a pipe.

In some materials, however, this steady flow can suddenly lock into organized, crystal-like patterns. When electrons settle into these rigid arrangements, the material undergoes a shift in its state of matter and stops conducting electricity. Instead of acting like a metal, it behaves as an insulator. This unusual behavior provides scientists with valuable insight into how electrons interact and has opened the door to advances in quantum computing, high-performance superconductors used in energy and medical imaging, innovative lighting systems, and extremely precise atomic clocks.

A group of physicists at Florida State University, including National High Magnetic Field Laboratory Dirac Postdoctoral Fellow Aman Kumar, Associate Professor Hitesh Changlani, and Assistant Professor Cyprian Lewandowski, has now identified the specific conditions that allow a special kind of electron crystal to form. In this state, electrons arrange themselves in a solid lattice yet can also shift into a more fluid form. This hybrid phase is called a generalized Wigner crystal, and the team's findings appear in npj Quantum Materials, a Nature publication.

To read more, click here.