Researchers at the Niels Bohr Institute, University of Copenhagen, steered very thin conductors from superconductivity to insulation—creating an "impossible," strange state between the two mutually exclusive states.

Materials research is absolutely crucial when dealing with quantum states. Whatever material is used as the basis for creating controllable quantum states, like if you want to build applications using quantum states for computing, sensing, or communication, the materials often define to what extent you can eliminate the ever-present noise that disturbs or even disrupts the desired "clean" quantum states or signals. It is an ongoing battle.

The team led by Saulius Vaitiekenas, associate professor at the Niels Bohr Institute, has succeeded in creating what is supposed to be an impossible intermediate state between superconductor = absolutely no resistance or loss of electrical connection—and total insulation = complete shut-off of the electrical signal.

The work is published in the journal Physical Review Letters.

To read more, click here.