The concept of cause and effect plays an important role in both our everyday lives, and in physics. If you set a ball down in front of a window and kick it hard, a split-second later the ball will hit the window and smash it. What we don’t observe is a world where the window smashes on its own, thereby causing the ball to be kicked – that would seem rather nonsensical. In other words, kick before smash, and smash before kick, are two different physical processes each having a unique and definite causal order.
But, does definite causal order also reign supreme in the quantum world, where concepts like position and time can be fuzzy? Most physicists are happy to accept the paradox of Schrödinger’s cat – a thought experiment in which a cat hidden in a box is simultaneously dead and alive at the same time, until you open the box to check. Schrödinger’s cat illustrates the quantum concept of “superposition”, whereby a system can be in two or more states at the same time. It is only when a measurement is made (by opening the box), does the system collapse into one of its possible states.
But could two (or more) causally distinct processes occur at the same time in the quantum world? The answer, perhaps shockingly, is yes and this paradoxical phenomenon is called indefinite causal order (ICO).
To read more, click here.