Evanston, IL In a paper to be published in Science Jan. 18, scientists Chad Mirkin and Sharon Glotzer and their teams at Northwestern University and University of Michigan, respectively, present findings in nanotechnology that could impact the way advanced materials are made.  

The paper describes a significant leap forward in assembling polyhedral nanoparticles. The researchers introduce and demonstrate the power of a novel synthetic strategy that expands possibilities in metamaterial design. These are the unusual materials that underpin “invisibility cloaks” and ultrahigh-speed optical computing systems. 

"We manipulate macroscale materials in everyday life using our hands,” said Mirkin, the George B. Rathmann Professor of Chemistry at the Weinberg College of Arts and Sciences. “Even preschool children can easily manipulate toy building blocks, fitting them together nicely to fill space. At the nanoscale, we can’t use our hands to manipulate nanoparticle building blocks because of the vast size difference between our hands and the nanoparticles.  

“Because DNA and nanoparticles have dimensions on the same length scale and we can chemically encode particles with DNA so they can be designed to recognize complementary particles, and therefore the DNA effectively becomes our hands.”   

These “hands” are designed to recognize particles with complementary shapes and arrange them to form space-filling structures.

To read more, click here.