A new model provides a detailed visualization of the clustering of protons and neutrons within the excited nuclear compound formed just after two nuclei collide and fuse.

When two nuclei collide with sufficient energy, they can temporarily fuse into a short-lived “pre-compound”—an excited-state nucleus that can later decay into a stable state or fall apart (through fission, for example). Researchers have now developed an improved theoretical approach for computing and analyzing the nuclear structures formed during this brief time. The new technique demonstrates that groups of protons and neutrons form temporary “clusters” corresponding to smaller, stable nuclei within the larger nucleus produced by the collision. Understanding the structure of this fleeting nuclear state is essential for deciphering many nuclear reactions—such as those in stars—that are often studied through nuclear collision experiments.

To read more and view the video, click here.