The ability to control nanoscale imperfections in superconducting wires results in materials with unparalleled and customized performance, according to a new study from the Department of Energy's Oak Ridge National Laboratory.

Applications for superconducting wires, which carry electricity without resistance when cooled to a critical temperature, include underground transmission cables, transformers and large-scale motors and generators. But these applications require wires to operate under different temperature and magnetic field regimes.

A team led by ORNL's Amit Goyal demonstrated that superconducting wires can be tuned to match different operating conditions by introducing small amounts of non-superconducting material that influences how the overall material behaves. Manipulating these nanoscale columns—also known as defects—allows researchers to exert control over the forces that regulate the wires' superconducting performance. The team's findings are published in Nature Publishing Group's Scientific Reports.

To read more, click here.